A Critical Role of AMT2;1 in Root-To-Shoot Translocation of Ammonium in Arabidopsis.

نویسندگان

  • Ricardo F H Giehl
  • Alberto M Laginha
  • Fengying Duan
  • Doris Rentsch
  • Lixing Yuan
  • Nicolaus von Wirén
چکیده

Ammonium uptake in plant roots is mediated by AMT/MEP/Rh-type ammonium transporters. Out of five AMTs being expressed in Arabidopsis roots, four AMT1-type transporters contribute to ammonium uptake, whereas no physiological function has so far been assigned to the only homolog belonging to the MEP subfamily, AMT2;1. Based on the observation that under ammonium supply, the transcript levels of AMT2;1 increased and its promoter activity shifted preferentially to the pericycle, we assessed the contribution of AMT2;1 to xylem loading. When exposed to 15N-labeled ammonium, amt2;1 mutant lines translocated less tracer to the shoots and contained less ammonium in the xylem sap. Moreover, in an amt1;1 amt1;2 amt1;3 amt2;1 quadruple mutant (qko), co-expression of AMT2;1 with either AMT1;2 or AMT1;3 significantly enhanced 15N translocation to shoots, indicating a cooperative action between AMT2;1 and AMT1 transporters. Under N deficiency, proAMT2;1-GFP lines showed enhanced promoter activity predominantly in cortical root cells, which coincided with elevated ammonium influx conferred by AMT2;1 at millimolar substrate concentrations. Our results indicate that in addition to contributing moderately to root uptake in the low-affinity range, AMT2;1 functions mainly in root-to-shoot translocation of ammonium, depending on its cell-type-specific expression in response to the plant nutritional status and to local ammonium gradients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters.

The AMMONIUM TRANSPORTER (AMT) family comprises six isoforms in Arabidopsis thaliana. Here, we describe the complete functional organization of root-expressed AMTs for high-affinity ammonium uptake. High-affinity influx of (15)N-labeled ammonium in two transposon-tagged amt1;2 lines was reduced by 18 to 26% compared with wild-type plants. Enrichment of the AMT1;2 protein in the plasma membrane ...

متن کامل

Interactive Effects of Cadmium and Zinc Application on Their Uptake by Rice Under Waterlogged and Non-waterlogged Conditions

In order to investigate the effect of Cd and Zn on uptake, concentration and the translocation factor of the Cd and Zn in the rice plant, a factorial experiment was conducted with four factors including two rice cultivars of Vandana and Hashemi, two waterlogged and non-waterlogged conditions and three levels of Zn and Cd (0, 5 and 10 mg kg-1 soil). The experiment was carried out in a randomized...

متن کامل

Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1;3-dependent manner.

Root development is strongly affected by the plant's nutritional status and the external availability of nutrients. Employing split-root systems, we show here that local ammonium supply to Arabidopsis thaliana plants increases lateral root initiation and higher-order lateral root branching, whereas the elongation of lateral roots is stimulated mainly by nitrate. Ammonium-stimulated lateral root...

متن کامل

Phytoremediation capability of nickel and manganese polluted soil by Sorghum biocilor L.

A pot experiment was conducted based on a factorial study and complete random block design with three replicates to investigate the phytoremediation potential of Sorghum biocilor L. in soils polluted with nickel and manganese during 2017-2018. The first factor was nickel nitrate (0, 60, and 120 mg kg-1 soil) and the second factor comprised of manganese sulphate (0, 50, and 100 µM). The characte...

متن کامل

NIP1;2 is a plasma membrane-localized transporter mediating aluminum uptake, translocation, and tolerance in Arabidopsis.

Members of the aquaporin (AQP) family have been suggested to transport aluminum (Al) in plants; however, the Al form transported by AQPs and the roles of AQPs in Al tolerance remain elusive. Here we report that NIP1;2, a plasma membrane-localized member of the Arabidopsis nodulin 26-like intrinsic protein (NIP) subfamily of the AQP family, facilitates Al-malate transport from the root cell wall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular plant

دوره 10 11  شماره 

صفحات  -

تاریخ انتشار 2017